dbRIP: a highly integrated database of retrotransposon insertion polymorphisms in humans.
نویسندگان
چکیده
Retrotransposons constitute over 40% of the human genome and play important roles in the evolution of the genome. Since certain types of retrotransposons, particularly members of the Alu, L1, and SVA families, are still active, their recent and ongoing propagation generates a unique and important class of human genomic diversity/polymorphism (for the presence and absence of an insertion) with some elements known to cause genetic diseases. So far, over 2,300, 500, and 80 Alu, L1, and SVA insertions, respectively, have been reported to be polymorphic and many more are yet to be discovered. We present here the Database of Retrotransposon Insertion Polymorphisms (dbRIP; http://falcon.roswellpark.org:9090), a highly integrated and interactive database of human retrotransposon insertion polymorphisms (RIPs). dbRIP currently contains a nonredundant list of 1,625, 407, and 63 polymorphic Alu, L1, and SVA elements, respectively, or a total of 2,095 RIPs. In dbRIP, we deploy the utilities and annotated data of the genome browser developed at the University of California at Santa Cruz (UCSC) for user-friendly queries and integrative browsing of RIPs along with all other genome annotation information. Users can query the database by a variety of means and have access to the detailed information related to a RIP, including detailed insertion sequences and genotype data. dbRIP represents the first database providing comprehensive, integrative, and interactive compilation of RIP data, and it will be a useful resource for researchers working in the area of human genetics.
منابع مشابه
Database documentation of retrotransposon insertion polymorphisms.
Retrotransposons constitute more than 40 percent of the human genome with L1, Alu, SVA, and HERVs known to remain active in transposition. Retrotransposition contribute to genetic diversity in the form of retrotransposon insertion polymorphism (RIP) that is defined as the presence or absence of a retrotransposon insertion among human populations at a specific genomic location. So far close to 5...
متن کاملeuL1db: the European database of L1HS retrotransposon insertions in humans
Retrotransposons account for almost half of our genome. They are mobile genetics elements-also known as jumping genes--but only the L1HS subfamily of Long Interspersed Nuclear Elements (LINEs) has retained the ability to jump autonomously in modern humans. Their mobilization in germline--but also some somatic tissues--contributes to human genetic diversity and to diseases, such as cancer. Here,...
متن کاملGenome-wide development of transposable elements-based markers in foxtail millet and construction of an integrated database
Transposable elements (TEs) are major components of plant genome and are reported to play significant roles in functional genome diversity and phenotypic variations. Several TEs are highly polymorphic for insert location in the genome and this facilitates development of TE-based markers for various genotyping purposes. Considering this, a genome-wide analysis was performed in the model plant fo...
متن کاملPopulation-wide sampling of retrotransposon insertion polymorphisms using deep sequencing and efficient detection
Active retrotransposons play important roles during evolution and continue to shape our genomes today, especially in genetic polymorphisms underlying a diverse set of diseases. However, studies of human retrotransposon insertion polymorphisms (RIPs) based on whole-genome deep sequencing at the population level have not been sufficiently undertaken, despite the obvious need for a thorough charac...
متن کاملEfficient DNA Fingerprinting Based on the Targeted Sequencing of Active Retrotransposon Insertion Sites Using a Bench-Top High-Throughput Sequencing Platform
In many crop species, DNA fingerprinting is required for the precise identification of cultivars to protect the rights of breeders. Many families of retrotransposons have multiple copies throughout the eukaryotic genome and their integrated copies are inherited genetically. Thus, their insertion polymorphisms among cultivars are useful for DNA fingerprinting. In this study, we conducted a DNA f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human mutation
دوره 27 4 شماره
صفحات -
تاریخ انتشار 2006